

Signaux | Chapitre 4 | Plan de cours

S4 · Introduction à la mécanique quantique

I - Dualité onde-corpuscule

- I.1 Aspect corpusculaire de la lumière
 - a) Expérience : effet photoélectrique
 - b) Interprétation d'Einstein
 - c) Relations de Planck-Einstein
- 1.2 Aspect ondulatoire de la matière
 - a) Interprétation de De Broglie
 - b) Expérience : interférences d'électrons
 - c) Analyse de l'expérience

II - Introduction au formalisme quantique

- II.1 Interférences particule par particule
- II.2 Fonction d'onde
- II.3 Expérience des trous d'Young
- II.4 Inégalité de Heisenberg

III - Modèle de Bohr de l'atome d'hydrogène

- III.1 Approche semi-classique
- III.2 Modèle planétaire de Bohr
- III.3 Quantification des niveaux d'énergie électronique
- III.4 Spectre d'émission
- III.5 Limites du modèle

Capacités exigibles du chapitre	
Décrire une expérience mettant en évidence l'effet photoélectrique. Expliquer pourquoi elle nécessite d'introduire le photon.	l.1
Énoncer les relations de Planck-Einstein, donnant l'énergie et l'impulsion d'un photon.	I.1.c
${\cal E}=h u \qquad p=rac{{\cal E}}{c}=rac{h}{\lambda}$	
Décrire une expérience d'interférences d'électrons.	1.2
Énoncer la relation de De Broglie.	I.2.a
$\lambda_{ m DB} = rac{h}{ m p}$	
Savoir évaluer si un objet doit être traiter de manière classique ou quantique.	1.2.c
Vocabulaire : probabilité, densité de probabilité, amplitude de probabilité.	11.2
Définir la fonction d'onde.	II.2
Décrire une expérience d'interférences particule par particule. L'analyser à l'aide de la fonction d'onde.	II.1 et II.3
Établir , à l'aide du phénomène de diffraction, l'ordre de grandeur :	11.4
$\Delta x \Delta p_x \sim h$	
Énoncer l'inégalité d'Heisenberg.	11.4
$\Delta x \Delta p_x \ge \frac{\hbar}{2}$	
Définir le modèle planétaire de Bohr de l'atome d'hydrogène.	III.2
Démontrer , à partir de la quantification du moment cinétique $L=n\hbar$, la relation :	III.3
$\mathcal{E}_n = -rac{\mathcal{E}_1}{n^2}$ avec: $\mathcal{E}_1 = rac{m}{2} \left(rac{e^2}{4\pi arepsilon_0 \hbar} ight)^2 = 13,6 ext{ eV}$	

III.5

☐ Connaître les limites du modèle de Bohr.